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In this paper, we study the pixel-based likelihood method for cosmic microwave background data
analysis through simulations. while there are many different likelihood methods for CMB, the pixel-
based likelihood is the only method that calculates the exact likelihood function directly. Therefore,
it can illustrate the principles of CMB statistics much clearly, providing a nice introduction to the
fundamentals of the field. We start by briefly outlining the basics of CMB and the history of its
measurements. We will then discuss how to analyze these measurements in the scope of pixel-based
likelihood. We then address the limitations and uncertainties arising from this method based on our
simulation results.

I. INTRODUCTION

The cosmic microwave background(CMB) is one of the
most important probes in cosmology. It is remarkably
uniform in all directions—resembling a black body ra-
diation spectrum at a temperature of 2.73 K. However,
most of the information is hidden under the anisotropies
of O(10−5), which was discovered decades later after the
first observations by Penzias and Wilson in 1964[1]. The
matter perturbations caused by the quantum fluctua-
tions in the early universe are imprinted in the CMB
temperature(T ) spectrum at the time of matter-radiation
decoupling. Scattering between photons and electrons up
to that period leaves a ’curl-free’ polarization(E-mode)
, whereas gravitaional lensing–and possibly early tensor
perturbations–is a source to ’divergence-free’ (B-mode)
polarization spectrum in the CMB[2].

There is an abundance of observational efforts to mea-
sure the CMB temperature and polarization fields, in-
cluding space missions[3][4], balloon experiments[5], and
ground based telescopes[6][7][8]. Diverse observational
method allows precise measurements over a wide range of
angular scales. The data is also in good agreement with
the standard model in cosmology; a homogeneous and
isotropic universe. In the context of the ΛCDM frame-
work, current data[3] suggests a spatially flat(Ωkh

2 =
0) universe composed of baryons(Ωbh

2 = 0.022), dark
matter(Ωch

2 = 0.12), and dark energy(ΩΛh
2 = 0.68) up

to sub-percent accuracy. Moreover, the level of precision
cosmology achieved in the recent years can provide valu-
able data for particle physics, e.g. constraining neutrino
properties from the thermal relics of the early universe[9].

The likelihood function to constrain the model param-
eters from observed CMB data is far from unique. Mak-
ing a suitable choice for a certain type of experiment
can often be difficult, and there have been cases that a
sensitive model providing accurate results in some exper-
iments turned out to be misleading for others. With that
said, the pixel-likelihood method that will be discussed
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in this paper captures the core properties of CMB data
analysis in a relatively simple manner.

Statistics of CMB

The CMB temperature field T (n̂) = T (1 + Θ(n̂)) ob-
served in a given direction n̂ has a fluctuation Θ(n̂). The
direct values of Θ(n̂) cannot be predicted by our model
parameters, because our own universe is only one partic-
ular realization from a set of universe sharing the same
parameter set. So we can only infer statistical properties
of the observed perturbation field. We start by decom-
posing Θ(n̂) in terms of spherical harmonics [2][10]:

Θ(n̂) =
∑
l,m

almYlm(n̂) (1)

where the harmonic Ylm corresponds to an angular
scale θ ∼ π/l, with (2l + 1) m-modes for each multipole
l. Assuming the alm’s follow a Gaussian distribution, the
power spectrum

〈alma∗l′m′〉 = δll′δmm′Cl (2)

fully characterizes a given field. The subscript m from
Cl can be dropped using rotational invariance of CMB.

Now the two-point correlation function C(θ) =
〈Θ(n̂1)Θ(n̂2)〉 can be written in terms of Cl

C(θ) =
∑
l

2l + 1

4π
ClPl(cos θ) (3)

where n̂1 · n̂2 = cos θ.
A similar analysis can be done for polarization fields E

and B by introducing spin-2 spherical harmonics Y±2 lm
along with the Stokes Parameters Q and U :

(Q+ iU)(n̂) =
∑
l,m

a2 lm Y2 lm(n̂) (4)

(Q− iU)(n̂) =
∑
l,m

a−2 lm Y−2 lm(n̂) (5)
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FIG. 1. The TT power spectrum constructed from the Planck
measurements along with best fit results[3].

where the coefficients for E and B are related by

aElm = −1

2
( a2 lm + a−2 lm) (6)

aBlm =
i

2
( a2 lm − a−2 lm). (7)

The actual calculation can be performed in terms of ei-
ther E and B or Q and U since they are physically equiv-
alent. We use Q and U for our simulation.

The correlation functions derieved from the above rela-
tion is then later used to construct the covariance matrix.
See reference [10] for more details.

Cosmic Variance As mentioned earlier, our analysis
is fundamentally limited by the fact that there is only
one observable universe. We cannot detect a monopole-
shift of our vicinity, nor can we distinguish a cosmological
dipole from our peculiar motion with respect to the CMB
rest frame[2]. The exact relation between Cl and alm

Cl =
1

2l + 1

∑
m

〈|alm|〉 (8)

requires an ensemble average operation, meaning that
we need to average over all possible realizations. It is
apparent that this is not possible. So we replace 〈|alm|〉
with |alm| to obtain the estimator for Cl:

Ĉl =
1

2l + 1

∑
m

|alm| (9)

Ĉl has a mean of Cl and a variance[11]〈(
Ĉl − Cl
Cl

)2〉
=

2

2l + 1
. (10)

This is known as the cosmic variance and reflects our
limited(2l+ 1) sample size for each l. The effect is appa-
rant in Fig. 1, where the disagreement between the data
and the fit curve is significant in the low-l region.

II. PIXEL-BASED LIKELIHOOD

The basic object of our interest is the likelihood func-
tion L, i.e., the probability of the observed data d given
a model, regarded as a function of the model itself. If the
model is defined in terms of a vector of parameters Θp,
we have:

L(Θp) = p(d|Θp). (11)

We will simulate our data using the six independent
ΛCDM parameters[12]

Hubble parameter H0 = 67.5 km s−1 Mpc−1

Baryon density Ωbh
2 = 0.022

Dark matter density Ωch
2 = 0.122

Neutrino mass mν = 0.06 eV

Curvature Ωk = 0

Optical depth τ = 0.06

and three parameters to generate the primordial power
spectrum.

Comoving curvature power As = 2× 10−9

Scalar spectral index ns = 0.96

Tensor to scalar ratio at pivot r = 0

In the following analysis, we will fit the optical depth
to reionization(τ). It is a unitless quantity which pro-
vides a measure of the line-of-sight free-electron opacity
to CMB radiation. Assuming a fixed dependence of elec-
tron density on redshift, a larger value of τ implies eariler
periods of reionization and thus an earlier onset of star
and galaxy formation[13].

The likelihood in real space(in terms of observed val-
ues, rather than alm’s) is defined as[11]

L = p(m|Cl) =
1

2π|M |1/2
exp

(
−1

2
mTM−1m

)
(12)

where m is the observed map with 3N elements con-
taining the data of T (Θ), Q and U . The covariance ma-
trix M is calculated from the model parameters by the
correlation function introduced earlier.

M(n̂i · n̂j) =

〈TiTj〉 〈TiQj〉 〈TiUj〉〈TiQj〉 〈QiQj〉 〈QiUj〉
〈TiUj〉 〈QiUj〉 〈UiUj〉

 (13)

The above likelihood is exact, but highly expensive
from a computational standpoint. The computational
cost to evaluate M as well as its inverse scales roughly
with lmax, limiting the use of pixel likelihood method
to only large angular scales. Small scale analysis should
resort to approximation methods[14][15] such as pseudo-
Cl formalism for efficient calculation.
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FIG. 2. An example of a TT map simulated with Nside = 8.

A. Simulation Methods

We used CAMB[12] to generate Cl power spectrums from
the cosmological parameters and healpy[16][17] to gen-
erate maps from Cl. CAMB is a library for calculating
CMB, lensing, galaxy count, and other CMB-anisotropy
related calculations. healpy is a python implementation
of the HEALPix scheme, designed to efficiently process
CMB data in spherical sky coordinates.

The HEALPix algorithm starts by dividing the sphere
into twelve identical square-shaped facets. Each square is
further divided into N2

side segments where Nside is a user
defined parameter. A HEALPix map m is a 1-dimentional
object containing the values of each pixel. Fig. 2 shows
an example map generated from healpy.

The main steps of the simulations are as follows:

• Generate a power spectrum Cl,0 with a set of cos-
mological parameters Θp,0.

• Generate a map m0 from the above power spec-
trum.

• Generate n sets of Cl,n from parameters Θp,n for
sufficiently large n. Can be optimized by using a
minimization algorithm rather than brute-force cal-
culations.

• Minimize the negative log-likelihood by computing
− log p(m0|Cl,n) for each n.

It is important to note that the likelihood in (12) is
not well-defined. Since the mean values of T , Q, and
U maps are all zero by definition, the degree of freedom
of each maps are reduced to N − 1. This implies that
the covariance matrix M is singular and therefore does
not have a proper inverse matrix. So in real analysis, the
covariance matrix is always corrected with a noise matrix
N involving the systematic uncertainties of the setup.
We used an identity matrix of O(10−5) to regularize our
〈TT 〉 matrix and O(10−10) for the other matrices.

FIG. 3. The result of fitting 50 maps withNside = 8 generated
from optical depth τ = 0.06, identity matrix regularization.

III. RESULTS

To test the performance of our method, we fitted the
optical depth τ for 50 maps generated from τ = 0.06.
The resolution is Nside = 8, corresponding to an angular
scale of roughly ∼ 7◦ and an lmax of 23. The Nside pa-
rameter of our map cannot exactly determine the value of
lmax since different m components of the same l spherical
harmonics can represent a variety of angular scales.

The fit result is shown in Fig. 3. While we cannot
make accurate statistical statements due to our limited
sample size, there seems to be a significant bias towards
τ ' 0.08. The reason behind this bias is unclear, al-
though it was reproduced in most of our parameter fits.
Recovered values of curvature(Ωk) from maps generated
with Ωk = 0 were also biased towards Ωk ' 0.1. Chang-
ing the regularization matrix to a random matrix of a
similar scale did not remove this bias(Fig. 4).

The resolution of 50 simulations should correspond to
an error of approximately σ ∼ 1/

√
50 ∼ 14%. Consid-

ering the effects of the cosmic variance, rest of the fit
results (excluding the peak around τ = 0.08) seems to be
in good agreement with the initial value of τ = 0.06.

IV. CONCLUSION

CMB data analysis has provided the most accurate
measurements of our universe for decades. Many ongning
experiments (BICEP/Keck, SPIDER, GroundBird, etc.)
aim to uncover more information from CMB polarization
fields, in hopes of better understanding the early phase
of our universe and its subsequent evolution.

There are many likelihood methods designed for CMB
analysis. Pixel-based likelihood, the one we’ve seen in
this paper, is an exact likelihood function that does not
involve any approximations. However, it is only appropri-
ate for certain low-l analysis because of its large computa-
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FIG. 4. The result of fitting 50 maps withNside = 8 generated
from optical depth τ = 0.06, random matrix regularization.

tional costs. Other methods—such as the Blackewll-Rao
estimator or the Hamimeche-Lewis method—also have
their weaknesses which makes deciding a suitable likeli-
hood method for a certain experiment very difficult.

Due to the limited timeframe available fo write this
paper, we could not address all of the subtleties that took

place during our study. Most notably, we could not fully
understand the cause of the bias mentioned in section III.

A. Research limitations

• Regularizing the covariance matrix through either
an identity matrix or a random matrix seems to
cause a bias in the fit results. We need a physically
sound regularization scheme for the covariance ma-
trix.

• The likelihood depends on our choice of lmax near
3Nside− 1. In particular, the likelihood diverges to
unphysical value when the maximum value of l is
reduced by 1, to 3Nside − 2. The relation between
lmax and L should be studied.
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